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Abstract

In this paper, we study the problem of bi-objective path
planning with the objectives minimizing the length and
maximizing the clearance of the path, that is, maximiz-
ing the minimum distance between the path and ob-
stacles. We consider a set of vertical segments as the
obstacles and propose an efficient algorithm for finding
all intervals of Pareto optimal solutions when the fist
objective is evaluated with Fuclidean metric and the
second one is evaluated by Manhattan metric. Finally,
we show that the algorithm results in finding (v/2,1)-
approximation Pareto optimal solutions when both ob-
jectives are evaluated with Euclidean metric.

1 Introduction

Path Planning (PP) is one of the challenging prob-
lems in the field of robotics. The goal is to find op-
timal path(s) for two given start and destination points
among a set of obstacles. However, usually minimizing
the length of the the path is considered as the optimal-
ity criterion, regarding the application of the problem
other objectives such as smoothness and clearance, that
is maximizing the distance between the path and ob-
stacles, have been also considered in the literature [2].
For example, in many applications, the robot needs to
move around in order to perform its task properly. The
need to move around the environment led to the ques-
tion of what path a robot can take to accomplish its
task, in addition to being safe. In this paper, we define
the optimal path regarding to two objectives minimiz-
ing the length of the path and maximizing the minimum
distance between the path and obstacles.

A classical approach to compute the minimum length
path is computing the visibility graph of obstacles and
convert the problem to a graph search problem. For
a set of n obstacle vertices, the visibility graph can be
computed in O(n?logn) time using a tree structure and
ray technique [4]. This approach is one of the best-
known algorithms to obtain the shortest path where the
distance between the path and the obstacle is equal to
zero— a path with clearance zero. Also, Hershberger
et al [5] proposed an efficient planar structure for PP
problem in O(nlogn) time.
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Wein [7], by using a combination of the Voronoi dia-
gram and the visibility graph introduced a new type of
visibility structure called Voronoi Visibility Diagram to
find the shortest path for a predefined value \ of clear-
ance. He considered the PP problem in the setting of
single objective optimization problem with the objective
minimizing the length subject to minimum clearance .
Geraerts [3] proposed a new data structure called Ez-
plicit Road Map that creates the shortest possible path
with the maximum possible clearance. The introduced
structure is useful for computing the path in the corridor
spaces. Davoodi [1] studied the problem of bi-objective
PP in grid with the two objectives of minimizing path
length and maximizing clearance and then showed that
Pareto optimal solutions to the two-objective problem
in the grid workspace. He also studied the problem
in the continuous space under Manhattan metric, and
proposed an O(n?) time algorithm where the obstacles
are n vertical segments. The problem under Euclidean
metric was remain as an open problem.

We study the problem of bi-objectives PP in contin-
uous space with the objectives minimizing the length
of the path and maximizing its minimum distance from
obstacles. The goal is computing Pareto optimal solu-
tions, that are the solutions which cannot be shortened
if and only if their clearance is minimized— Since this
problem is a bi-objective optimization problem in the
continuous space, there an infinite number of Pareto op-
timal solutions. So, it is impossible to provide a polyno-
mial algorithm to compute all the solutions. To smooth
this issue, we focus on different Pareto optimal solu-
tions, the optimal paths with different middle points
—called Distinct Pareto Optimal paths. We consider a
PP search space with n vertical segments as obstacles
and propose an O(n3) time algorithm to compute all
distinct Pareto optimal solutions where the length of
the paths is evaluated with Euclidean and the clearance
is evaluated with Manhattan Metric. Then, we show
that the solutions are efficient approximation solutions
of the problem where the both objectives are evaluated
under Euclidean metric.

The next section briefly introduces bi-objective path
planning problem. Section 3 proposes exact algorithm
for computing distinct Pareto optimal solutions when
the length and clearance objectives are evaluated under
Euclidean and Manhattan metric, respectively. Section
4 extends the results to the case both the objectives are
evaluated under Euclidean distance.
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2 Bi-objective Path Planning Problem

Let O = {s1,52,...,5,} be a set of left to right sorted
vertical segments as the obstacles, and s and ¢ be the
start and destination points in the plane. Assume,
w.l.o.g., that s and ¢ lie on the left and right side of
the obstacles, respectively. Let the shortest path from
s to t denote by s-t-path.

For a collision-free path P = {s =
VO, V1, s Um,y U1 =  t} with m  breakpoints
V1,02, ,Um, define L(P) as the length of P un-

der Euclidean metric. Also, define C1(P) and Cy(P)
as the clearance of P under Manhattan and Euclidean
metrics, respectively, that is minimum distance between
P and the obstacles. We denote the clearance of P
with C(P) in general, when the metric is not the case.
The objectives are minimizing L(P) and maximizing
C(P) in the bi-objective path planning problem.

For two collision-free paths P and P’, we call P dom-
inates P’ and denote it by P < P’ if L(P) < L(P’) and
L(P) > L(P"), or if L(P) < L(P’) and L(P) > L(P’).
For any pair of paths P and P’, three cases may hap-
pen, (i) P <X P’, (ii) P < P and (iit) none of them
dominates. in the third case we call P and P’ are non-
dominated. That means, there is no strict preference
between P and P’.

Given the definition of dominate, paths such as P
which is not dominated by other collision-free path, are
called Pareto optimal paths. Indeed, any improvement
of P in its length or clearance comes from scarifying it
in the other objective. Let II* be the set of all Pareto
optimal path. There is a Mapping from the path plan-
ning workspace to the objective space L — C. We also
call the projection of IT* in L — C space Pareto Front.
For any small clearance value A, there is some shortest
path in the workspace [1]. Therefore, the projection of
Pareto front of the problem on C-space is one compo-
nent, while it is possible the projection of Pareto front
of the problem on L-space are several components.

Since the workspace of bi-objective path planning is
continuous, Pareto front is infinite set in general. Thus,
there is no algorithm to construct path is IT* one-by-
one. Two approaches are proposed to handle this issue
in this paper:

e Finding all different (or Distinct) Pareto optimal
paths, the path with different breakpoints in the
workspace. In other words, the Pareto front is a
set of discrete components. We can compute the
extreme solution of each component.

e Finding a set of finite and polynomial size of solu-
tions which are an approximation set of all Pareto
fronts.

The first approach will result in finding different in-
tervals Iy, I, ..., I, for some k, of clearance. We will

compute the lower and upper bound of the intervals and
map it with a set of shortest paths with almost same
breakpoints. We use this approach and solve the prob-
lem of bi-objective path planning for solving the prob-
lem when clearance of the path is measured with Man-
hattan metric. Also, we show these computed paths are
approximation solutions for the case length and clear-
ance of the paths are measured with Euclidean metric.

3 Bi-Objective Path Planning with Euclidean
Length and Manhattan Clearance

Let us explain our approach to solve the bi-objective
path planning algorithm roughly at first. We construct
a general map for computing a tree of shortest path —
called SPM— with clearance A\ = 0 by using the idea
proposed by Lee and Preparata [6]. The idea is us-
ing a sweepline from the start point s to the destination
point ¢ algorithm based on monotonicity of the shortest.
While the sweep-line moves from left to right, the left
side vertices of the segments construct a tree with the
root s and the parent of each vertex p is the vertex p’
such that p’ is the last breakpoint in the shortest path
between s and p. Also, in each step the right side of
the sweep line is decomposed to a set of regions with
the property that te points lie inside a region has the
same parent in the left side of the sweepline. When
the sweepline reaches the destination point t, the short-
est path (with clearance C1(P) = A = 0) can be easily
computed from s to ¢t by a simple backward manner.
After computing such a general map —called SPM(0)—
we increase value of A from 0 to co to compute the
Pareto front intervals. To this end, we compute all crit-
ical A may change the shortest path tree, particularly
the breakpoints of s-t-paths. Since, the obstacles of the
workspace, O = {s1, $2, ..., Sn}, are vertical segments,
the following observation is clear.

Observation 1 The shortest path from s to the end-
points of the obstacles (and also tot) is an x—monotone
path.

For finding the shortest path with clearance A\, we
need to expand (or fat) the obstacles with size A. De-
fine O(A) = {s1(A), s2(A), -+, $n(N)}, where s;(A) is the
segment s; after fatting with size A under Manhattan
distance. That is, if @& shows the Minkowski sum of
two objects, s;(\) = s; ®.Sq(X), where Sq(A) is a square
with the diameter size 2\ which rotates 7/4. Indeed, the
boundary of Sq(A) is the set of all points in the plane
whose Manhattan distance from the center of Sq(\) is
exactly A.

Observation 2 The breakpoints of any s-t-path with
clearance A belong to the set O(\).
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Figure 1: The SPM map for four obstacles with visibility
edges, SPM-point and bisectors.

Based on Observation 2, our strategy in finding the
Pareto optimal intervals is first computing SPM for
O(X = 0). Then by increasing A, we handle the events
may change SPM and the shortest path from s to ¢t. To
this end, we construct a data structure that can handle
the events and create the shortest possible path and re-
port the paths that are distinct. The tree defines the
shortest path on the set O(A) U {s,t} with root s. We
will explain below important features of the tree [6].

3.1 SPM(0), the Shortest Path Map for O(\ = 0)

SPM(A =0) is an incremental constructed tree at root
s which is obtained by a sweepline strategy and con-
tains the shortest path from s to any obstacle’s ver-
tices. Suppose SPM(0) is available for the obstacles
$1 = Piq1, " ,8i—1 = Pi—1Gi—1- Bach node p; (or g;),
for j < i has a particular weight(p;) that shows the
length of s-p;-path. The right halfplane of s;_; is de-
composed to a set of regions corresponding with a node
in SPM(0) tree as its parent.

When the sweepline meets obstacle s; = p;q;, first,
the regions which p; and ¢; lies are founded, and then
they inserted as new leaves into SPM(0) with the par-
ents corresponding with the regions. Also, their weights
is computed using the weights of their parents. Finally,
the decomposition of the halfplane of s; is updated using
bisector of p; and ¢; and the new visibility edges. The
bisector of p; and ¢;, denoted by B,,q,, is the inter-
section of regions corresponding with p; and ¢;. That
is, any points p on the right side of s; which length
of s-p;-p-path and s-g;-p-path are the same (see Fig.1).
The points of SPM are generally of three types; the in-
tersection points between a pair of bisectors, between
bisectors, and obstacles and between bisectors and the
visibility edges of the obstacles.

Theorem 1 For a set of n vertical segments, the size
of the SPM containing all points and bisectors is linear
and the SPM can be constructed in O(nlogn) time [6].

3.2 SPM()), the Shortest Path Map for O(\ > 0)

After Computing SPM(0), by fatting the obstacles with
size A, we able to compute and report a Pareto optimal
solution with clearance A as shown in Fig.1. To find all
Pareto optimal intervals, we need to consider all the dis-
tinct paths that are the endpoints of the fronts. When
an increase in changes the path, some breakpoints may
change, in which case an event occurs.

3i(A) = s; @ Sq()\) has six vertices and they can be
easily computed as linear functions respect to parameter
A, e.g., if p; and ¢; are the top and bottom endpoints
of s;, the highest and the lowest vertices of s;(\) can
be shown p;(A) = yp: + A and ¢;(A) = yg — A, where
Ypi and y4; denotes the y coordination of p; and g¢;, re-
spectively. Note that, the other four vertices of s; play
a local changes in the space decomposition and can be
taking to account without any increasing in the time or
space of the algorithms’ order. We explain the details
of this issue in the Appendix. When A increases, it is
possible some shortest path change. We call such values
of A the critical As that can be obtained by considering
all events may change the structure of the SPM. Three
types of events may occur:

1) A function p;(A) (or g;(\)) intersects with By, 5, (A)
for some ¢ and k.

2) A function p;(A) (or ¢;(\)) intersects with some vis-
ibility edges of the obstacles. When visibility edges
change. The equations of these edges may also not
be constant. There are two types. The first type,
the visibility edges between the functions p;(A) (or
gi(A)) and p;(A) That slope of edge is constant. the
second type, the visibility edges between the func-
tions p;(A) and ¢;(A\) That slope of edge is linear
function.

3) Two obstacles are joined while they are fatting.

To handle the last type, we simply consider the two
joined neighbor obstacles as one obstacle with the top-
most and bottommost functions they have. Similar to
the explanation in the Appendix, it is possible to handle
the differences between their z-coordinates. The size of
such type of events is O(n).

The first type of events occurs when a function p;(\) (or
qi()\)) intersects with the bisector By, ,, (A) for some j
and k. We need to handle this case if p;(A) lies on the
corresponding region of one of p;(A) or ¢;(A\) , otherwise
no change is need. So, we update SPM by inserting an
edge (gx, p;) and update the weights of the sub tree with
root ¢, (See Fig. 2).

The second type of events occurs when a functions p; ()
(or ¢;(N\)) intersects with some O(n?) visibility edges.
So, we update SPM by removing the edge (g, px) and
inserting an edge (pi, px) (See Fig. 3).
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Figure 3: Illustration of the second type of events.

After each iteration of the above processes, we update
the length of all shortest path from s to the endpoints of
the obstacles and update the bisectors one-by-one from
left to right as well as updating the critical Aa in the
heap to extract the minimum critical .

Using a heap structure, the mentioned events and
critical As can be handled efficiently. Let m be the
number of breakpoints of s-t-path. So, using SPM())
s-t-path can be reported in O(m) time for any value of
A. Also, all the s-t-path are represented with at most
O(n?+ R) breakpoints in O(mn?+nR) time, where R is
the number of insertion and deletions to the heap struc-
ture, which is O(n?) in the worst case. Since m = O(n),
the time complexity of the algorithm is O(n?).

4 Bi-Objective Path Planning with Euclidean
Length and Clearance

To solve the problem of bi-objective path planning when
the both objectives are evaluated with Euclidean dis-
tance, we need to fat the obstacles using a disk with ra-
dius A, denoted by D()), instead of Sq(\). However, the
structure of the proposed algorithm remain unchanged
for computing the expanded obstacles, it difficult to up-
date the length of the shortest path. In fact, we need
to present the shortest paths as a function respect to
parameter A\. When D()) is used to Minkowski sum,
the shortest path is obtained by tangent lines of some
growing disks which is a high order function based on
A. So, in the following, we show that the proposed al-
gorithm in the previous section provides approximation
solutions under the following definition when the both
objectives are evaluated under Euclidean distance.

Definition. Let II be a bi-objective minimization
problem with the objectives f; and fs. A solution X
is an («, B8)-approximation Pareto optimal solution for
I1, if there is no solution Y such that f1(X) > af1(Y)
and fo(X) > Bf2(Y), or f1(X) > afi(Y) and fo(X) >
Bfa(Y).

Theorem 2 . For the problem of bi-objective path plan-
ning under Euclidean metric, there is a (v/2,1)- approz-
imation of Pareto optimal solutions.

Proof. The proof is a straightforward result of the
fact that D(A) can be approximated using the cocen-
tric square Sq(X). O

5 Conclusion

In this paper, we considered a biobjective path plan-
ning problem with objectives minimizing the length and
maximizing the clearance— That is maximizing the min-
imum distance between the path and objectives. We
assumed the workspace contains a set of n vertical seg-
ments, and propose an efficient O(n?) time algorithm for
finding Pareto optimal solutions of the problem where
the length and clearance are evaluated by Euclidean and
Manhattan metrics, respectively. Also, we show that
such path are good approximation solutions when the
both objectives are evaluated by Euclidean metric. So,
an open problem remains here is proposing an efficient
algorithm to find the Pareto optimal solutions for this
case of the problem.
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Appendix

Consider Fig.4 and let explain constructing the map of the
shortest path for clearance A (SPM(A)) when we have an
obstacle | = (a,p, ¢, d,q,e).

Let w(p) and w(q) be the length of s-p-path and s-g-path,
respectively. For any arbitrary point « lies on the boundary
of the regions R(1),R(2),R(3) and R(4), the length of
s-z-path is same as s-p-z-path or s-q-z-path, as defined below:

d(z,p) + w(p) = d(q,q) +w(q)

This bisector can be defined as follows:
Bp,q = {zld(z,d) +w(q) + v2X = d(z,p) + w(b) + V2A}.

That means, in SPM () the parent of any point z lies
on B, 4 can be either p or ¢ in SPM(X). However, if x lies
in R(2) or R(3), its parent should be consider vertex ¢ or b.
Note that ¢ is parent of ¢, and p is parent of b.

Also, If the point s lies in the region R(5), the shortest
path from s to x passes through a or d. In this case a is the
parent of p, and d is the parent of g in SPM(\).

B(0,4)

Figure 4: SPM-map when the obstacle set consists of one
segment.




